
UAPC 2025
Solution Sketches

Division 2 Exclusive
Problems

Loop over the input and keep track of the smallest time value where the LED is off.

It'll also help to have a flag denoting whether you saw the LED ever being off or
not.

Testing LEDs - Noah Gergel
D2 Solves: 33

Fastest Solve:
nevgoonies 0:07:12

Initialize a global count to 0. For every word x in S, loop over the characters in x
and record the number of times W appears as a substring.

That is, for the indices [0, len(x) - len(W)], check if x.substr(i, len(W)) == W, and
increase the count if so.

Search Wizard - Noah Gergel
D2 Solves: 34

Fastest Solve:
Linkedin Lists 0:08:53

Problems Common to
Both Divisions

Loop through the letters in "UAPC" and output the ones not present in
the input.

Vandalism - Ian DeHaan
D1 Solves: 21

D2 Solves: 37

Fastest Solve:
vvv Colorado School of Mines vvv 0:00:44

Sort of Sort - Grayden Price

By definition if ai is larger than everything before it, it will be in the sort of sorted list.
This leads to the following algorithm:

● Loop through the list.
○ For each ai loop over all aj before it, if ai is greater than or equal to each aj then it will be in the

sort of sorted list.

This should time out, to speed up the solution realize that knowing only the largest
aj is sufficient for checking ai. This leads to the intended algorithm:

● Loop through the list while maintaining the largest aj.
○ If ai is greater than or equal to the largest aj it will be in the sort of sorted list.

D1 Solves: 20

D2 Solves: 32

Fastest Solve:
Calgary School of Mines 0:02:56

The food needs H*T total energy to finish cooking.

Suppose we cook the food for X minutes.

If X <= H, the amount of energy the food gets is X^2/2.

If X > H, the amount of energy the food gets is H^2/2 + (X-H)*H.

Solve for X to find that if H^2/2 >= H*T, the answer is sqrt(2*H*T). Otherwise, the
answer is T + H/2.

of in the cold food of out hot eat the
food - Ian DeHaan

D1 Solves: 15

D2 Solves: 17

Fastest Solve:
Calgary School of
Mines 0:13:05

Classic graph search problem. If you have never seen one before, here the basic
approach.

- Maintain a set of land cells you know you can reach. Initially, you only know
about the cell with S.

- When you first find a new cell that can be reached, also add it to a different set
of cells you are to “expand” (i.e. want to check the 4 adjacent cells).

Main loop: while there are still cells to expand:

- Remove a cell from the set of cells to expand. Examine its neighbours.
- Each land neighbour that has not yet been reached should be added to both

the set of cells you know you can reach and the set of cells you want to
expand.

Island Exploration - Zac Friggstad
D1 Solves: 17

D2 Solves: 22

Fastest Solve:
vvv Colorado School of
Mines vvv 0:08:23

For each laser pointer, you can determine if and where it will intersect the x-axis in a couple
of ways. Here is one:
- If the slope is not 0, solve for the x-intercept for the infinite line and see if this is less than
or greater than the laser pointer’s x-position to determine if the laser itself crosses the
x-axis.
- Sort all lasers that hit the x-axis by the x-intercept. You need to remember the laser names
as well. In python, you can sort the list of (x-intercept, laser-name) tuples and print out the
laser names in this order.
- Use a fast sorting algorithm (i.e. not bubble sort, insertion sort, etc.). The built-in sorting
algorithms for all supported programming languages are fast enough.

Tracing Laser Pointers
Joseph Meleshko

D1 Solves: 18

D2 Solves: 21

Fastest Solve:
or3 0:16:43

The solution that comes to mind!

● Reduce the problem to a one-dimensional case by considering a straight line instead of a
plane. We have n intervals of equal length, and our goal is to select points on the line
such that each interval contains exactly one point.

● To solve this subproblem, we can use a greedy algorithm. Select the rightmost starting
point among all intervals, place a point there, and remove all intervals that contain this
point. Repeat this process until no intervals remain.

● Now, to solve the main problem. For each paper, determine its projection on both the
x-axis and y-axis, which will form intervals. Solve the subproblem separately for the x-axis
and the y-axis. As a result, each paper will have exactly one point on the x-axis and one
on the y-axis, which together determine the coordinates of the nail for that paper. The
running time of the solution will be O(nlogn).

One Nail / One Hole
Parsa Zarezadeh

D1 Solves: 2

D2 Solves: 0

Fastest Solve: or3 2:36:58

A solution that feels out of this world!

● Consider all coordinates (x, y) where x - 1 is divisible by L and y - 1 is divisible by W. It can
be easily proven that each paper will have exactly one such point on it. Given the
problem's constraint that all numbers are even, we can see that this point will not be on
the paper's corners and will be unique for each paper.

● To solve the main problem, for each paper, find the unique point that satisfies the above
condition in O(1) time (ensuring that no point is chosen twice). This results in an overall
running time of O(n).

Can you come up with a new and creative solution that runs in O(n2)? Let us know!

It'll help reframe the problem as trying to zero runs of 1s, as every run can be handled
independently of each other, with one exception. For odd-length runs, you can take the
approach of zero-ing every other 1 first, and then zeroing the rest:
0111110 -> 0101010 -> 0000000

For even-length runs, you can do the same except when you get down to a run of length 2:
01111110 -> 01010110 -> 00000110
To deal with two 1s, you first extend it by 1 and then treat it like a run of length 3:
00110 -> 01110 -> 01010 -> 00000
This might not always be possible, if the run is initially just two 1s it needs two 0s before it to
work.

Strange Light Switches
Noah Gergel

D1 Solves: 7

D2 Solves: 0

Fastest Solve:
vvv Colorado School of Mines vvv 1:02:34

If an input is solvable though, it suffices to solve it greedily with
zeroing odd-length runs first and then the even ones, possibly
needing to circle back for the runs of length 2. From this, we also
know that the only impossible cases are rotations of the pattern
011011… or just 111 itself as after the first step it is again some
rotation of 011.

Strange Light Switches
Noah Gergel

There are three paths to earn C:

PATH 1. A->C;
PATH 2. A->B->C
PATH 3. A->B->E->D->B->C

Because A can be used directly or indirectly to obtain C, let’s start by assuming A equals
zero and start from converting B->C. Consider how to get the most C starting from initial B,
D, E.

So, first convert all initial D and E into B, then see how many times you can carry out that
conversion path. In PATH3, there’s a “produce-and-use” strategy in which any leftover D is
pointless. Therefore, we can simplify 3E → 2D and 2D → 3B into 3E → 3B. When B ≥ 3, you
can perform the cycle 3B → 4E → 3B. The number of such cycles depends on E and X. Every
time you have 3 B and spend one X, you can keep your total B constant while gaining 1 E. In
other words, for every 3 B, four uses of X will net you one additional B.

D1 Solves: 5

D2 Solves: 1

Fastest Solve: Alberta Amber
 1:18:18

Coin Exchange - Answer

Going from A → B → C requires 9 A for 1 C, whereas A → C directly needs only 5 A—so
unless you still have some X available, advancing A through B is a net loss. If X is still
left, compare whether it’s more profitable to convert A into B (start another cycle of
PATH 2) or just follow PATH 1 to produce C. Finally, handle any remaining conversions
from B to C.

Another solution by Zac: first guesses how many times to convert A→B—up to a
maximum of 25—and converts any remaining A directly to C; then, under A=0, it
maximizes E→D and D→B conversions, performs the 9B→12E→8D→12B loop whenever
B≥9 depending on X, and finally compares fully converting B→C at once versus
converting it once and then recursively solving, choosing the better option.

Coin Exchange - Answer

For an input value x_i, let N_i be such that N_i/D <= x_i < (N_i+1)/D.

Claim: in the optimal solution x_i will be rounded to one of these two fractions.
Otherwise, say (for example) x_i was rounded to a value A/D with A < N_i. Then some
other x_j must have been rounded up to >= (N_j+1)/D. But then rounding x_i to (A+1)/D
and x_j to N_J/D instead is a better solution (easy to check).

So: initially set all x_i to N_i/D. Let K := D - sum_i N_i be the number of these values
that should actually be rounded up to (N_i+1)/D. Using sorting, pick the K values that
would result in the least increase (perhaps even a decrease) in the final answer.

Nearest Nice Numbers
Noah Weninger

D1 Solves: 10

D2 Solves: 8

Fastest Solve: Calgary School of Mines 0:14:25

Division 1 Exclusive
Problems

Recall xi = 2i-1x mod p, and bi = xi mod 2.

For some i let’s consider xi, and note xi+1 = 2xi mod p. Notice xi+1 is 2xi if 0 ≤ xi < p/2,
and xi+1 is 2xi - p if p/2 ≤ xi < p.

Furthermore, bi will be 0 exactly in the first case, and 1 exactly in the second case,
so long as p is odd (the p=2 case is special but simple).

So the bits bi tell us a range of possible values for each xi , and by getting allowable
ranges for each i from 1 to log p we should be able to narrow down the possible
values for x.

Now the idea is to do a binary search for the value x, based on the fact that each bit
bi will cut the possible range of values of x in half.

D1 Solves: 5

Fastest Solve: Calgary
School of Mines 0:53:05Generator Dream - Jacob Skitsko

We can consider another approach that’s not binary search.

Again, notice xi+1 is 2xi if 0 ≤ xi < p/2, and xi+1 is 2xi-p if p/2 ≤ xi < p.

Furthermore, bi will be 0 exactly in the first case, and 1 exactly in the second case.

In this approach we’ll progressively learn the i least significant bits (LSBs) of each xi.
Note the first LSB is handed to you by b1 , and we know all of the bits of p. Suppose
we’ve found out the i LSBs of some xi are aiai-1 … a1 .

Then if bi = 0 we know 2xi = xi+1 , and so the i+1 LSBs of xi+1 are aiai-1 …a10. If bi=1, then
we know 2xi - p = xi+1 , and we can again calculate the i+1 LSBs of xi+1 using 2xi - p
and a bit mask.

After iteratively calculating the LSBs for i = 1, …, log p we will know all log p bits of
xlog p. We can then backtrack to calculate each of x(log p) - 1 , x(log p) - 2 , … , x1 and the
secret x.

Thought process
1) Observe distances d() are ultrametric if and only if for any triple of points u,v,w the
maximum value of d(u,v),d(u,w),d(v,w) appears at least twice (i.e. the triangle has at least 2
longest edges).

2) Extend this: distances d() form an ultrametric if and only if for every pair u,v there is not a
u → v path using only edges with distance < d(u,v). [easy proof]

3) Finally, if only some distances are given then they can be extended to an ultrametric if
and only for every given distance d(u,v), there is no u → v path of given edges with strictly
smaller distance.

Proof [harder direction]: Set the missing edge distances d(x,y) = minimum edge cost D
such that there is an x → y path using edges with cost <= D, or just the max given distance
if x, y are not connected.

Underspecified Ultrametrics
Zac Friggstad

D1 Solves: 2

Fastest Solve: or3 3:03:33

Algorithm:

Group the given edges by their value, i.e. (u,v) and (w,x) are in the same group if
d(u,v) = d(w,x).

● Build a graph over the points, initially with no edges.
● For each group in increasing order of distance:

- For each edge (u,v) in the group, check that u,v are not in the same
connected component (otherwise, the answer is NO).
- After this check, add all edges of the group to the graph.

Using a union/find data structure, this can be implemented to run in O(V log V + E
log E) where V = # points and E = # given distances.

Note, this is very similar to Kruskal’s MST algorithm except we are batch-processing
edges based on their value before adding them.

Separating Enemies - Ian DeHaan
D1 Solves: 3

Fastest Solve:
Calgary School of Mines
1:43:39

Use dynamic programming.

dp(i) = minimum cost to destroy road between i'th and (i+1)'th house AND separate
all enemy pairs (s, t) with s, t <= i.

Of all enemy pairs (s, t) with s, t <= i, let (s', t') be the one with maximum s'.

We must destroy some road between s' and t', and doing so will destroy all intervals
ending before i and after s'.

dp(i) = c_i + min_{s' <= j < t'} dp(j)

Of all enemy pairs (s, t) with s, t <= i, let (s', t') be the one with maximum s'.

We must destroy some road between s' and t', and doing so will destroy all intervals
ending before i and after s'.

dp(i) = c_i + min_{s' <= j < t'} dp(j)

We can find (s', t') by maintaining the latest starting point ending before our position.

We can query min_{s' <= j < t'} dp(j) in log(n) time with a segment tree.

Final Runtime: O(n log n)

