
UAPC 2024
Solution Sketches

Problem setters, testers, and judges:

- Ian DeHaan
- Answer
- Grayden Price
- Noah Weninger
- Maple

Kattis Team: Greg Hamerly, Fredrik Niemelä

UACS - Event site organization and point-of-contact for sponsors.

Thanks!

And Thanks To Our Sponsors!

Division 2 Exclusive
Problems

Many ways to do it. Here’s one.

items = {"keys", "phone", "wallet"}
N = int(input())

taken = [input() for _ in range(N)]

items.difference_update(taken)

if items: print(*sorted(items), sep="\n")
else: print("ready")

Keys, Phone, Wallet - Zac Friggstad
D2 Solves: 49

Fastest Solve:
plugged in 0:02:38

A few ways as well.

One is to create a dictionary mapping initials to a list of names with those initials.

Then for each query, look up the initials in the dictionary and look at the
corresponding list (if any) to answer the query.

Tip - one of many way to get the initials of a name:

first, last = fullname.split()
initials = first[0]+last[0]

Candy Store - Noah Weninger
D2 Solves: 44

Fastest Solve:
sigmunf freud: freddy fast bear har
har harhar 0:11:59

Birthday Candles - Zac Friggstad

1) Sort each guest’s candles.

2) Blow out the 1st candles from each guest first, then the 2nd candles from each
guest next, then the 3rd and so on.

3) If you can’t blow out all of the jth candles of the guests, sort these jth candles
and blow out what you can in this order.

Running time: O(N log N) where N is the total number of candles.

D2 Solves: 12

Fastest Solve:
Singh++ 1:03:31

Problems Common to
Both Divisions

You only have to remove duplicates from each box.

Trick: can count the number of duplicates in a list L easily:
len(L) - len(set(L))

But, again, there are many other ways to do it.

Pencil Crayons - Zac Friggstad
D1 Solves: 23

D2 Solves: 43

Fastest Solve:
cannot cpp
0:02:04

Needs some thought.

When you pass the potatoes K steps, if it is passed to the person who holds the
gravy (even if just momentarily) then add 1 to the final answer. Check quickly with:

potatoes_pos < gravy_pos and gravy_pos <= potatoes_pos + K

When you pass the gravy K steps, if the potatoes are currently futher than the gravy
then the number of new people that get gravy on their potatoes is

min(K, potatoes_pos - gravy_pos)

Dinner Time - Zac Friggstad
D1 Solves: 17

D2 Solves: 11

Fastest Solve:
Blahaj 0:22:45

Ray Chasing - Zac Friggstad

Tip: translate the coordinates so the ray is emitted from the origin.

Then you can tell if it hits the left/right wall and top/bottom wall of the box simply by
looking to see if the coordinates the ray passes through are positive/negative.

If a ray would hit two sides according to this check, which one would it hit first? You
can solve for the “time” it intersects a wall and see which is smaller (or if the same,
it hits a corner).

Alternatively (my solution), can use 2D cross products to see if the corners lie to the
left/right of the ray (or on the ray).

D1 Solves: 14

D2 Solves: 14

Fastest Solve:
ln(x) 0:18:17

Evacuation - Grayden Price

For each bridge, compute the time it becomes unusable by stepping through the tornado’s
path.

Then run Dijkstra’s algorithm except you can use a bridge (i.e. enqueue it in the heap) if it
remains usable throughout the entire crossing.

Dijkstra’s algorithm is a well-known algorithm and is common in programming. It finds the
fastest way to go between two locations in an graph where edges have different times to
traverse.

D1 Solves: 6

D2 Solves: 1

Fastest Solve: Brandon Fuller
0:35:22

Can solve in linear time using depth-first search or breadth-first search.

During the search, when you reach a new vertex then assign it the smallest number
that has not been assigned to one of its neighbours.

If the graph has no triangles, this will use 2 colours (unless the graph has no edges,
in which case it just uses 1 colour).

If the graph has triangles, you can prove that the search never has more than 2
coloured neighbours of a node when you first visit it using the property there are
no cycles of length > 3 (basically because the graph looks like nodes and 3-cycles
glued together in a tree-like fashion) - so only 3 colours will be used.

Note that the graph might be disconnected!

Triangle Trees - Noah Weninger
D1 Solves: 4

D2 Solves: 1

Fastest Solve:
Blahaj 1:02:17

Trying all ways of filling in the dots is far too slow.

For a line L that does not contain an 0, there are 2y(L) ways to fill in dots if there are y(L) dots
not spanned by L. If we sum this over all lines, we overcount the number of ways to get at
least one line of x.

In general, Let S be a nonempty subset of lines. There are at most 18 lines (8 + 8 + 2) so
there are less than 218 subsets to try.

Let c(S) be 0 if the lines in S span a grid cell with an O. Otherwise, let it be 2y(S) where y(S) is
the number of empty cells not covered by a line in S. The answer is then the sum of (-1)^{|S|
+ 1} * c(S) over nonempty subsets S by the inclusion/exclusion principle.

Special case: if the grid already has a line of X then it is just 2d where d is the number of
dots.

Lines of X - Zac Friggstad
D1 Solves: 2

D2 Solves: 0

Fastest Solve: ln(x) 2:34:57

Hardest in Div 2, really hard even for Div 1.

Suppose we can answer the following query in O(1) time:

Does s[i1:j1] == t[i2:j2]?

We can do this by computing for every i,j the longest common prefix of s[i:] and
t[j:] by just using a simple loop through the characters: O(n3) total for all i,j (there
are faster ways, but they aren’t needed).

Using this, we can solve the problem with dynamic programming.

Let f(i,j) be true iff the first i characters of s can generate the first j characters of t.
Base cases i = 0 and j = 0 are immediate.

Power String Matching -
Zac Friggstad

D1 Solves: 2

D2 Solves: 1

Fastest Solve: ln(x) 1:54:20

For the recurrence:

- First try just ignoring the i’th character of s[:i] (i.e. check f(i-1,j)).
- Then try having a suffix of s[:i] cover a suffix of t[:j] (perhaps with repetitions). That

is, for each 1 <= k <= min(i,j) we try all p = k, 2k, 3k, …
- If s[i-k:i] matches t[j-p,j-p+k] we recursively check f(i-k,j-p), otherwise we quit the

loop.

Running time (if N = M):
O(N2) subproblems, O(N/k) different values of p per k for a running time of
O(N2 * sum_{k=1}^N N/K) = O(N3 * log(N))

Power String Matching -
Zac Friggstad

D1 Solves: 2

D2 Solves: 1

Fastest Solve: ln(x) 1:54:20

Division 1 Exclusive
Problems

Binary search the answer.

To answer a query if a value of Q is possible, do a DFS of the tree starting at the end of the
river. The DFS will reroute rapids within a subtree so no node has > Q incoming rapids in a
way that minimizes the number of rapids that must leave the subtree.

To process a node, get all rapids that must leave the subtrees rooted at its children. Have
Q of them end at this node (or all of them if there are < Q). The rest plus one more for this
node go outside of this node.

The query Q is successful if at most Q rapids reach the end of the river in this DFS.

Rerouting Rapids - Ian DeHaan
And Noah Weninger

D1 Solves: 3

Fastest Solve: Brandon Fuller
1:39:16

Bidirectional search

For some value 1 <= T <= 32, generate all O(2T) values that can be generated from
the original number N by recursively trying all ways to apply T steps of magic.

Then for each query M, generate all values that can generate M by applying at
most 32-T steps of “reverse magic”. That is a, number X can be generated by 2X
and 2X+1 and also by at most one number Y where we add the all-1 digit string to Y.
Be careful about overflow in C++. See if any of these numbers was in the set of
numbers generated from N. This generates O(332-T) numbers.

Running time: O(2T + Q * 332-T). The optimal value to set T is 24 or so.

Number Magic - Answer
and Maple

D1 Solves: 2

Fastest Solve: Brandon Fuller 1:33:09

First, consider the part where the gophers have already decided whether they
actually want to live and the city holds the lottery.

We claim the lottery will always pick the same number of gophers no matter the
random choices that are made, so all that matters is the gopher’s random choice
about whether they actually want to live in the residence.

Can prove this as follows: For any choices of gophers S, T that are feasible where
|S| < |T|, there exists a gopher in T but not in S that could be added to S while
keeping it feasible. Not hard to prove.

Gopher Residence - Ian DeHaan
D1 Solves: 0

Fastest Solve:

To compute this number from a given set of interested gophers, we do it
recursively. For each room, compute the maximum number of gophers that can be
put in the rooms below it. Add the interested gophers to this room. Then while this
room’s capacity is violated, arbitrarily discard gophers until it is ok. This takes a
proof similar to the statement on the previous slide.

Back to the original problem. For each room we use dynamic programming to
compute the probability that exactly k gophers living under this residence
(including this residence). When combining these probabilities in a recursive way,
just clamp the values k to the room’s capacity.

Gopher Residence - Ian DeHaan
D1 Solves: 0

Fastest Solve:

